Youfu “Frank” Zhao

Youfu “Frank” Zhao

Professor, Plant Pathology, Endowed Chair in Bacterial Diseases of Tree Fruits 509-786-9284 Hamilton Hall 24106 N Bunn Rd. 

Research Interests

Dr. Zhao’s research focuses on Phytobacteriology and Plant-Microbe Interactions in the Department of Plant Pathology, Washington State University. His research and extension program advances the understanding of pathogenic and beneficial microorganism – host interactions for developing novel control strategies for bacterial diseases of tree fruits:

  • Bacterial disease of tree fruits
  • Fire blight disease of apple and pear
  • Bacterial canker disease of cherry
  • Antibiotic resistance
  • Copper resistance
  • Cherry X-disease phytoplasma, diagnosis, detection, management.

Special research interest areas include:

  • Pathogen Biology of tree fruit bacterial diseases, especially fire blight disease of apple and pear
  • Genetics and genomics of plant pathogenic bacteria and molecular mechanisms of pathogenesis
  • Pathogenic bacterial evolution and systematics
  • Biological control of tree fruit bacterial diseases
  • Antibiotic resistance of pathogenic bacteria and related resistance mechanisms

Professional Experience

  • Professor, Endowed Chair in Bacterial Diseases of Tree Fruits, Department of Plant Pathology, IAREC, Washington State University, 2022 — present
  • Professor, Department of Crop Sciences, University of Illinois at Urbana-Champaign, 2006-2021

Postdoc and Graduate Student Opportunities:

My lab currently has openings for postdoc, lab technician, and graduate student positions. If you are interested in working with plant pathogenic bacteria and tree fruits, please contact me.


  1. Yin, Y., Miao, J., Shao, W., Liu, X., Zhao, Y. F. and Ma, Z. Y. 2023. Fungicide resistance: Progress in understanding mechanism, monitoring and management. Phytopathology
  2. Wang, Y., Gai, Y., Zhao, Y. F., Wang, M., and Ma, Z. 2023. The calcium-calcineurin and high-osmolarity glycerol pathways co-regulate tebuconazole sensitivity and pathogenicity in Fusarium graminearum. Pesticide Biochem. Physiol. 190:105311.
  3. Yang, H-W, Lee, J. H., and Zhao Y. F. 2023. RpoN regulon in Erwinia amylovora revealed by transcriptional profiling and in silico binding site analysis. Phytopathology
  4. Kim, I., Lew, B., Zhao, Y., Korban, S., Choi, Y., and Kim, K. 2022. Biocontrol of fire blight via microcapsule-mediated delivery of Pantoea agglomerans E325 to apple blossoms. BioControl. 67: 433-442.
  5. Yu, M., and Zhao, Y. F. 2022. Spectinomycin resistance in Lysobacter enzymogenes is largely due to its rRNA target but also relies on cell-wall recycling and purine biosynthesis. Front. Microbiol. 13:988110.
  6. Liu, J., Zhang, X., Deng, S., Wang, H., and Zhao, Y. F. 2022. Thiamine is required for virulence and survival of Pseudomonas syringae pv. tomato DC3000 on tomatoes. Front. Microbiol. 13: 903258.
  7. Shao, W., Wang, J., Wang, H., Wen, Z., Liu, C., Zhao, Y. F., and Ma, Z. H. 2022. Fusarium graminearumFgSdhC1 point mutation A78V confers resistance to the succinate dehydrogenase inhibitor pydiflumetofen. Pest Management Sci 78: 1780-1788.
  8. Liu, N., Wang, J., Yun, Y., Wang, J., Xu, C., Wu, S., Xu, L., Li, B., Kolodkin-Gal, I., Dawood, D., Zhao, Y. F., Chen, Y., and Ma, Z. 2021. The NDR-kinase-MOB complex FgCot1-Mob2 regulates polarity and lipid metabolism in Fusarium graminearumEnviron. Microbiol. 23: 5505-5524.
  9. Tang, G., Yuan, J., Wang, J., Zhang, Y., Xie, S., Wang, H., Tao, Z., Liu, H., Kistler, C., Zhao, Y., Duan, C., Liu, W, Ma, Z., and Chen, Y. 2021. Fusarium BP1 is a reader of H3K27 trimethylation.
    Nucl. Acids Res. 49: 10448-10464.
  10. Wang, J., Liu, C., Chen, Y., Zhao, Y. F. and Ma, Z. 2021. Protein acetylation and deacetylation in plant pathogen interactions. Environ. Microbiol. 23: 4841-4855.
  11. Jian, Y., Liu, Z., Wang, H., Chen, Y., Yin, Y., Zhao, Y., and Ma, Z. 2021. Interplay of two transcription factors for recruitment of the chromatin remodeling complex modulates fungal nitrosative stress response in Fusarium graminearum. Nature Comm. 12:2576.
  12. Liu, J. Yu, M., Ge, Y.X., Tian, Y, L., Hu, B. and Zhao, Y. F. 2021. The RsmA RNA-binding proteins in Pseudomonas syringae exhibit distinct and overlapping roles in modulating virulence and survival under different nutritional conditions..
    Front. Plant Sci. 12: 637595.
  13. Shao, W., Zhao, Y. F. and Ma, Z. 2021. Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology 111: 455-463.
  14. Nian, J., Yu, M., Bradley, C., and Zhao, Y. F. 2021. Lysobacter enzymogenes strain C3 suppresses mycelium growth and spore germination of eight soybean fungal and oomycete pathogens and decreases disease incidences. Biol. Control 152: 104424.
  15. Chen, A., Ju, Z., Wang, J., Yin, Y., Zhao, Y., Ma, Z., and Chen, Y. 2020. The RasGEF FgCdc25 regulates fungal development and virulence in Fusarium graminearum via cAMP and MAPK signaling pathways. Environ. Microbiol. 22: 5109-5124.
  16. Wang, M., Wu, L., Mei, Y., Zhao, Y., Ma, Z., Zhang, X., and Chen, Y. 2020. Host-induced gene silencing of multiple genes of Fusarium graminearum enhances resistance to Fusarium head blight in wheat. Plant Biotechnol. J. 18: 2373-2375.
  17. Yu, M., Singh, J., Khan, A., Sundin, G., and Zhao, Y. F. 2020. Complete genome sequence of the fire blight pathogen Erwinia amylovora strain Ea1189. Mol. Plant-Microbe Interact. 33:1277-1279.
  18. Liu, J., Yu, M., Chatnaparat, T., Lee, J. H., Tian, Y., Hu, B., and Zhao, Y. F. 2020. Comparative transcriptomic analysis of (p)ppGpp-mediated gene expression reveals common regulatory networks in Pseudomonas syringae. BMC Genomics 21:296.
  19. Yang, H., Yu, M., Lee, J., Chatnaparat, T., and Zhao, Y. F. 2020. The stringent response regulator (p)ppGpp mediates virulence gene expression and survival in Erwinia amylovora. BMC Genomics 21:261.
  20. Yu, M., Zhang, G., Jiang, J., Du, L., and Zhao, Y. 2020. Lysobacter enzymogenes employs diverse genes for inhibiting hyphae growth and spore germination of soybean fungal pathogens. Phytopathology 110: 593-602.
  21. Yu, M., and Zhao, Y. Cell permeability, β-lactamase activity and transport contribute to high level of resistance to ampicillin in Lysobacter enzymogenes. Appl. Microbiol. Biotechnol. 104:1149-1161.
  22. Yu. M., and Zhao, Y. 2019. Comparative resistomic analyses of Lysobacter species with high intrinsic multidrug resistance. J. Global Antimicrob. Resist. 19: 320-327.
  23. Lee, J. H., Ancona, V., Chatnaparat, T., Yang, H-W, and Zhao. 2019. The RNA-binding protein CsrA controls virulence in Erwinia amylovora by regulating RelA, RcsB, and FlhD at the posttranscriptional level. Mol. Plant-Microbe Interact. 32: 1448-1459.
  24. Ge, Y. X., Lee, J. H., Liu, J., Yang, H-W., Tian, YL, He, B. S. and Zhao, Y. F. 2019. Homologs of the RNA binding protein RsmA in Pseudomonas syringae pv. tomato DC3000 exhibit distinct binding affinities with non-coding small RNAs and have distinct roles in virulence. Mol. Plant Pathol. 20: 1217-1236.
  25. Ge, Y. X., Lee, J. H., Hu, B. S. and F. Zhao. 2018. Loss of function mutations in the Dpp and Opp permeases render Erwinia amylovora resistance to kasugamycin and balsticidin S. Mol. Plant-Microbe Interact. 31: 823-832.
  26. Lee, J. H., Ancona, V., and Zhao, Y. F. 2018. Lon protease modulates virulence traits in Erwinia amylovora by directly monitoring major regulators and indirectly through the Rcs and Gac-Csr regulatory systems. Mol. Plant Pathol. 19:827-840.
  27. Lee, J. H. and Zhao, Y. F. 2018 Integration of multiple stimuli- sensing systems to regulate HrpS and type III system in Erwinia amylovora. Mol. Genet. Genomics 293:187-196.
  28. Lee, J. H. and Zhao, Y. F. 2017. ClpXP-depdendent RpoS degradation enables full activation of type III secretion system, amylovoran production and motility in Erwinia amylovora. Phytopathology 107:1346-1352.
  29. Ancona, V., Lee, J. H., and Zhao, Y. F. 2016. The RNA binding protein CsrA plays a central role in positively regulating virulence factors in Erwinia amylovora. Sci. Rep. 6:37195.
  30. Sundin, W. G., Wang, N., Charkowski, A. O., Castiblanco, L. F., and Zhao, Y. F. 2016. Perspectives on the transition from bacterial phytopathogen genomics studies to applications enhancing disease management: from promise to practice. Phytopathology 106:1071-1082.
  31. Lee, J. H., Sundin, G. W., and Zhao, Y. F. 2016. Identification of the HrpS binding site in the hrpL promoter and effect of the RpoN binding site of HrpS in regulation of the type III secretion system in Erwinia amylovora. Mol. Plant Pathol. 17:691-702.
  32. Lee, J. H., and Zhao, Y. F. 2016. Integration host factor is required for RpoN-dependent hrpL gene expression and controls motility by positively regulating rsmB sRNA in Erwinia amylovora. Phytopathology 106:29-36.
  33. Chatnaparat, T., Li, Z., Korban, S. S., and Zhao, Y. F. 2015. The bacterial alarmone (p)ppGpp is required for virulence and controls cell size and survival of Pseudomonas syringae on plants. Environ. Microbiol. 17:4253-4270.
  34. Chatnaparat, T., Li, Z., Korban, S. S., and Zhao, Y. F. 2015. The stringent response mediated by (p)ppGpp is required for virulence of Pseudomonas syringae tomato and its survival on tomato. Mol. Plant-Microbe Interact. 7:776-789.
  35. Ancona, V., Chatnaparat, T., and Zhao, Y. F. 2015. Conserved aspartate and lysine residues of RcsB are required for amylovoran biosynthesis, virulence, and DNA binding in Erwinia amylovora. Mol. Gen. Genomics 290: 1265-1276.
  36. Ancona, V., Lee, J. H., Chatnaparat, T., Oh, J., Hong, J., and Zhao, Y. F. 2015. The bacterial alarmone (p)ppGpp activates type III secretion system in Erwinia amylovora. J. Bacteriol. 197:1433-1443.
  37. Li, W., Anocona, V., and Zhao, Y. F. 2014. Co-regulation of polysaccharide production, motility, and expression of type III secretion genes by EnvZ/OmpR and GrrS/GrrA systems in Erwinia amylovoraMol. Gen. Genomics 289:63-75.
  38. Anocona, V., Li, W., and Zhao, Y. F. 2014. Alternative sigma factor RpoN and its modulation protein YhbH are indenpensible for Erwinia amylovora Mol. Plant Pathol. 15: 58-66.
  39. Yang, F., Korban, S.S., Pusey, P. L., Elofsson, M., Sundin, G. W., and Zhao, Y. F. 2014. Small molecule inhibitors suppress the expression of both type III secretion and amylovoran biosynthesis genes in Erwinia amylovoraMol. Plant Pathol. 15:44-57.
  40. Wu, X., Vellaichamy, A., Wang, D., Zamdborg, L., Kelleher, N. L., Huber, S. C. and Zhao, Y. F. 2013. Differential lysine acetylation profiles of Erwinia amylovora strains revealed by proteomics. J. Proteomics 79:60-71.
  41. Kim, I., Pusey, L., Zhao, Y. F., Korban, S. S., Choi, H., and Kim, K. 2012. Microencapsulation and controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple. J. Controlled Release 161:109-115.
  42. Wang, D. P., Qi, M. S., Calla, , Korban, S. S., Clough, S. J., Cock, P., Sundin, G. W., Toth, I., and Zhao, Y. F. 2012. Genome-wide identification of genes regulated by the Rcs phosphorelay system in Erwinia amylovora. Mol. Plant-Microbe Interact. 25:6-17.
  43. Wang, D., Korban, S. S., Pusey, L., and Zhao, Y. F. 2013. Characterization of the RcsC sensor kinase from Erwinia amylovora and other enterobacteria. Phytopathology 101:710-717.
  44. Wang, D., Korban, S. S., and Zhao, Y. F. 2010. Molecular signature of differential virulence in natural isolates of Erwinia amylovora. Phytopathology 100:192-198.
  45. Zhao, Y. F., Wang, D.P., Nakka, S., Sundin, G. W., and Korban, S. S. 2009. Systems-level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility. BMC Genomics 10:245.
  46. Zhao, Y. F., Sundin, G. W., and Wang, D. P. 2009. Construction and analysis of pathogenicity island deletion mutants in Erwinia amylovoraCan. J. Microbiol. 55:457-464.